THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2

PHYSICS 2 ALTERNATIVE TO PRACTICAL (For Both School and Private Candidates)

(1 of Both Bolloof and 1 fivate Canadauces

Time: 2 Hours 30 Minutes Monday, October 17, 2005 a.m.

Instructions

- This paper consists of five (5) questions.
- 2. Answer all questions.
- 3. Electronic calculators are not allowed in the examination room.
- 4. Cellular phones are not allowed in the examination room.
- 5. Write your Examination Number on every page of your answer booklet(s).

1. Fill in the gaps with correct responses.

ame of device	Sketch	(i) Physical Effect/Principle (ii) Application (uses)
(a) Spiral spring	FFADSUS YRENY.	(i)
	PHYSICS 1 VATIVE PD PRACTI LILL LLL LUSIK VAR	(ii) T.I.A.
(b)	danish .	(i)
		(ii)
(c) Scissors		(i)
	e not altewed in the example above of it. I c examination is Number on creek page of	(ii) The seasoning reduction (iii)
(d) Carbon microphone		
(e)		(i)
		(ii)

2. In an experiment to investigate the Young's modulus of a wooden metre rule, the following data were recorded in a table as follows:

Table 1

Load (g)	0	50	100	150	200	250	300
Height h above ground (cm)	89.80	87.40	85.10	82.70		78.10	76.10
Depression d (cm)		2.40		7.10	9.30		

Length $\ell = 80 \text{ cm}$

Breadth b = 2.58 cm

Thickness t = 0.54 cm

(a) Complete table 1 by filling in the blank spaces.

(21/2 marks)

- (b) Plot a graph of depression (vertical axis) against load (horizontal axis). (4½ marks)
- (c) From the graph:
 - (i) Compute the slope G.

(01 mark)

(ii) Determine Young's modulus E of the wooden metre rule given that

 $E = \frac{4}{Gb} \left(\frac{\ell}{t}\right)^3$, where ℓ , b and t are length, breadth and thickness respectively.

(02 marks)

3. The graph below was obtained by doing an experiment to determine the specific heat capacity of water.

A graph of Temperature Vs time.

(a) Determine the slope S of the graph.

(03 marks)

(b) From the graph find the room temperature.

(03 marks)

(c) Calculate the specific heat capacity of water in SI units given that $T = \frac{10800 \text{ t}}{\text{mc}}$

where T = temperature in °C

t = time in minutes

m = mass of water = 0.5 kg

c = specific heat capacity of water

(04 marks)

4. A concave mirror was used in an experiment with the arrangement shown in figure 1.

Fig. 1

The results were as follows.

Table 2

Object distance U (cm)	30	40	50	60	100
Image distance V (cm)	59.80	40.00	33.50	29.80	25.20
$\frac{1}{U}$ (cm ⁻¹)	0.033	0.025	0.020	0.017	0.01
$\frac{1}{V}$ (cm ⁻¹)		0.025	0.030	0.034	0.00 V

- (a) Suggest the aim of the experiement. (01 mark)
- (b) (i) Complete table 2 by inserting the missing values. (01 mark)
 - (ii) Plot graph of $\frac{1}{V}$ against $\frac{1}{U}$. (05 marks)
- (c) Find the average of intercepts. (01 mark)
- (d) What is the significance of the intercepts? (01 mark)
- (e) Evaluate your answer in 4. (d). (01 mark)

Fig. 2

The diagram above (figure 1) shows a metre bridge with two resistances X and R connected for comparison. A balance point is measured by d, the distance from the left end of the bridge. An unknown resistance X, is placed as shown and a balance point for different values of R were recorded as follows:

Table 3

Resistance R in ohms	1.0	2.0	5.0	7.0	8.0
Distance d in cm	75.00	60.00	37.50	30.00	27.30
e/.					

- (a) Complete table 3 by calculating the ℓ/d where $\ell = 100$ cm, (the total length of the bridge). (2½ marks)
- (b) Plot a graph of R (vertical axis) against $\frac{\ell}{d}$ (horizontal axis). (05marks)
- (c) From the graph find the value of R where $\frac{\ell}{d} = 2$ and $\frac{\ell}{d} = 3.00$. (01 mark)
- (d) From these results determine the resistance of X. (01 mark)